Font Size:
Structural and self-similar properties of representatives of one class of fractal functions and distributions of their values
Building: Mykhailo Drahomanov National Pedagogical University
Room: Room C
Date: 2018-09-28 05:05 PM – 17:20
Last modified: 2018-09-24
Abstract
We consider Qs-representation of numbersx∈[0,1] defined by parameters q0,q1,...,qs−1∈(0;1) and expansion of numbers x∈[0,1] in seriesx=α1q1−α1+∞∑k=2(αkq1−αkk−1∏j=1qαj(x))≡ΔQsα1α2…αn…,where αk∈{0,1,...s−1}≡A, q0+q1+...+qs−1=1. We study structural, local and global topological, metric andfractal properties of the function defined by equalityfφ(x)=fφ(ΔQsα1α2α3...αn−1αnαn+1...)=ΔQsφ(α1,α2)φ(α2,α3)...φ(αn−1,αn)φ(αn,αn+1)...,where φ is a given function (φ:A2→A).
For random variable Y=F(X), where X is a random variable with a given distribution, Lebesgue structure andspectral properties are studied.
For random variable Y=F(X), where X is a random variable with a given distribution, Lebesgue structure andspectral properties are studied.