Processing math: 100%

Institute of Mathematics Conferences, Sixth International Conference on Analytic Number Theory and Spatial Tessellations

Font Size: 
Structural and self-similar properties of representatives of one class of fractal functions and distributions of their values
Sofiia Ratushniak

Building: Mykhailo Drahomanov National Pedagogical University
Room: Room C
Date: 2018-09-28 05:05 PM – 17:20
Last modified: 2018-09-24

Abstract


We consider Qs-representation of numbersx[0,1] defined by parameters q0,q1,...,qs1(0;1) and expansion of numbers x[0,1] in seriesx=α1q1α1+k=2(αkq1αkk1j=1qαj(x))ΔQsα1α2αn,where αk{0,1,...s1}A, q0+q1+...+qs1=1. We study structural, local and global topological, metric andfractal properties of the function defined by equalityfφ(x)=fφ(ΔQsα1α2α3...αn1αnαn+1...)=ΔQsφ(α1,α2)φ(α2,α3)...φ(αn1,αn)φ(αn,αn+1)...,where φ is a given function (φ:A2A).
For random variable Y=F(X), where X is a random variable with a given distribution, Lebesgue structure andspectral properties are studied.